1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
| import os import numpy as np from rknn.api import RKNN import time import logging import sys import shutil logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(), logging.FileHandler('rknn_conversion.log') ]) logger = logging.getLogger("RKNN_Converter") BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ONNX_MODEL_DIR = os.path.abspath(os.path.join(BASE_DIR, "./onnx_models")) RKNN_MODEL_DIR = os.path.abspath(os.path.join(BASE_DIR, "./rknn_models")) CALIB_DATA_DIR = os.path.abspath(os.path.join(BASE_DIR, "./calib_data")) TARGET_PLATFORM = "rk3588" os.makedirs(RKNN_MODEL_DIR, exist_ok=True) os.makedirs(CALIB_DATA_DIR, exist_ok=True) SUPPORTED_QUANT_TYPES = { "rk3588": ["asymmetric_quantized-8", "dynamic_fixed_point-8", "float16"] } MODEL_CONFIGS = { "text_encoder": { "input_nodes": ["input_ids"], "input_shapes": [[1, 77]], "calib_data": { "input_ids": os.path.join(CALIB_DATA_DIR, "text_encoder_input.npy") }, "quantized_dtype": "asymmetric_quantized-8", "optimization_level": 3, "quantized_method": "channel" }, "unet": { "input_nodes": ["sample", "timestep", "encoder_hidden_states"], "input_shapes": [[1, 4, 64, 64], [1], [1, 77, 768]], "calib_data": { "sample": os.path.join(CALIB_DATA_DIR, "unet_sample.npy"), "encoder_hidden_states": os.path.join(CALIB_DATA_DIR, "unet_emb.npy") }, "quantized_dtype": "asymmetric_quantized-8", "optimization_level": 2, "quantized_method": "layer" }, "vae_decoder": { "input_nodes": ["latent"], "input_shapes": [[1, 4, 64, 64]], "calib_data": { "latent": os.path.join(CALIB_DATA_DIR, "unet_sample.npy") }, "quantized_dtype": "asymmetric_quantized-8", "optimization_level": 3, "quantized_method": "channel" } } def check_model_exists(model_name): """检查RKNN模型是否已存在""" rknn_path = os.path.join(RKNN_MODEL_DIR, f"{model_name}.rknn") if os.path.exists(rknn_path): logger.info(f"✅ 检测到已存在的RKNN模型: {model_name}.rknn") logger.info(f" 大小: {os.path.getsize(rknn_path)/1024/1024:.1f} MB") return True return False def create_calib_dataset(model_name): """创建校准数据集并返回文件路径""" model_calib_dir = os.path.join(CALIB_DATA_DIR, f"{model_name}_calib") if os.path.exists(model_calib_dir): shutil.rmtree(model_calib_dir) os.makedirs(model_calib_dir, exist_ok=True) num_samples = 3 logger.info(f" 生成 {num_samples} 个校准样本...") input_files = [] for node_name in MODEL_CONFIGS[model_name]["input_nodes"]: shape = None for j, node in enumerate(MODEL_CONFIGS[model_name]["input_nodes"]): if node == node_name: shape = MODEL_CONFIGS[model_name]["input_shapes"][j] break if shape: node_files = [] for i in range(num_samples): data_path = os.path.join(model_calib_dir, f"{node_name}_{i}.npy") if node_name == "timestep": data = np.array([i], dtype=np.float32) else: data = np.random.rand(*shape).astype(np.float32) np.save(data_path, data) node_files.append(data_path) input_files.append(node_files) calib_file_path = os.path.join(model_calib_dir, "calib_dataset.txt") with open(calib_file_path, "w") as f: for i in range(num_samples): sample_line = [] for node_files in input_files: sample_line.append(node_files[i]) f.write(" ".join(sample_line) + "\n") logger.info(f" 创建校准数据集文件: {calib_file_path}") return calib_file_path def convert_model(model_name): """转换单个模型到RKNN格式""" logger.info(f"🚀 开始转换 {model_name.upper()} 模型...") if check_model_exists(model_name): return True rknn = RKNN(verbose=True) try: logger.info(" 设置配置参数...") quant_type = MODEL_CONFIGS[model_name].get("quantized_dtype", "asymmetric_quantized-8") if quant_type not in SUPPORTED_QUANT_TYPES[TARGET_PLATFORM]: logger.warning(f" 量化类型 {quant_type} 不被 {TARGET_PLATFORM} 支持,使用默认值") quant_type = "asymmetric_quantized-8" config_params = { 'target_platform': TARGET_PLATFORM, 'quantized_dtype': quant_type, 'optimization_level': MODEL_CONFIGS[model_name].get("optimization_level", 3), 'quantized_method': MODEL_CONFIGS[model_name].get("quantized_method", "channel"), } if model_name == "unet": config_params['output_optimize'] = True logger.info(f" 量化配置: {config_params['quantized_dtype']}") logger.info(f" 优化级别: {config_params['optimization_level']}") logger.info(f" 量化方法: {config_params['quantized_method']}") logger.info(" 验证配置参数...") ret = rknn.config(**config_params) if ret != 0: logger.error(f"❌ 配置失败! 错误码: {ret}") logger.warning("⚠️ 尝试使用默认配置...") safe_config = { 'target_platform': TARGET_PLATFORM, 'quantized_dtype': "asymmetric_quantized-8", 'optimization_level': 1, } ret = rknn.config(**safe_config) if ret != 0: logger.error("❌ 安全配置也失败,终止转换") return False onnx_path = os.path.join(ONNX_MODEL_DIR, f"{model_name}_fp16.onnx") if not os.path.exists(onnx_path): logger.error(f"❌ ONNX模型文件不存在: {onnx_path}") return False logger.info(f" 加载ONNX模型: {os.path.basename(onnx_path)}") logger.info(f" 输入节点: {MODEL_CONFIGS[model_name]['input_nodes']}") logger.info(f" 输入形状: {MODEL_CONFIGS[model_name]['input_shapes']}") ret = rknn.load_onnx( model=onnx_path, inputs=MODEL_CONFIGS[model_name]["input_nodes"], input_size_list=MODEL_CONFIGS[model_name]["input_shapes"] ) if ret != 0: logger.error(f"❌ 加载ONNX模型失败! 错误码: {ret}") return False logger.info(" 构建RKNN模型...") calib_file_path = create_calib_dataset(model_name) if not os.path.exists(calib_file_path): logger.error(f"❌ 校准文件不存在: {calib_file_path}") return False logger.info(f" 校准文件内容预览:") with open(calib_file_path, 'r') as f: lines = f.readlines() for i, line in enumerate(lines[:min(2, len(lines))]): logger.info(f" 样本 {i+1}: {line.strip()}") start_time = time.time() build_params = { 'do_quantization': True, 'dataset': calib_file_path, } if model_name == "unet": logger.info(" UNet检测到 - 使用最小构建参数") logger.info(" ⚠️ 注意: UNet转换可能需要较长时间和较大内存") ret = rknn.build(**build_params) build_time = time.time() - start_time if ret != 0: logger.error(f"❌ 构建失败! 错误码: {ret}") logger.error(" 可能原因: 内存不足或不支持的算子") if model_name == "unet": logger.warning("⚠️ 尝试使用优化级别0重新构建UNet...") rknn.config(optimization_level=0) start_time = time.time() ret = rknn.build(do_quantization=True, dataset=calib_file_path) build_time = time.time() - start_time if ret != 0: logger.error("❌ 优化级别0也失败,终止转换") return False logger.info(f" 构建成功! 耗时: {build_time:.1f}秒") logger.info(f" 构建成功! 耗时: {build_time:.1f}秒") rknn_path = os.path.join(RKNN_MODEL_DIR, f"{model_name}.rknn") logger.info(f" 导出RKNN模型到: {rknn_path}") ret = rknn.export_rknn(rknn_path) if ret != 0: logger.error(f"❌ 导出失败! 错误码: {ret}") return False if os.path.exists(rknn_path): size_mb = os.path.getsize(rknn_path) / (1024 * 1024) logger.info(f"✅ {model_name.upper()} 转换成功! 大小: {size_mb:.1f} MB") logger.info(" 验证模型加载...") rknn_lite = RKNN() ret = rknn_lite.load_rknn(rknn_path) if ret != 0: logger.warning("⚠️ 模型加载验证失败") else: logger.info("✅ 模型加载验证成功") rknn_lite.release() return True else: logger.error("❌ 导出文件未生成") return False except Exception as e: logger.error(f"❌ 转换过程中发生异常: {str(e)}") import traceback logger.error(traceback.format_exc()) return False finally: rknn.release() def main(): logger.info("=" * 60) logger.info(f"📡 开始RKNN模型转换 - 目标平台: {TARGET_PLATFORM}") logger.info(f"🔧 当前工作目录: {os.getcwd()}") logger.info(f"🔧 项目根目录: {BASE_DIR}") logger.info(f"🔧 ONNX模型目录: {ONNX_MODEL_DIR}") logger.info(f"💾 RKNN输出目录: {RKNN_MODEL_DIR}") logger.info(f"📊 校准数据目录: {CALIB_DATA_DIR}") logger.info(f"📊 支持的量化类型: {SUPPORTED_QUANT_TYPES[TARGET_PLATFORM]}") logger.info("=" * 60) if not os.path.exists(ONNX_MODEL_DIR): logger.error("❌ 错误: ONNX模型目录不存在") logger.error("请先完成ONNX转换") return os.makedirs(CALIB_DATA_DIR, exist_ok=True) models_to_convert = ["text_encoder", "vae_decoder", "unet"] success = True for model_name in models_to_convert: if not convert_model(model_name): logger.error(f"❌ {model_name.upper()} 转换失败,终止流程") success = False break logger.info("=" * 60) if success: logger.info("🎉 所有模型转换完成!") logger.info(f"RKNN模型已保存到: {RKNN_MODEL_DIR}") total_size = 0 for model_name in models_to_convert: model_path = os.path.join(RKNN_MODEL_DIR, f"{model_name}.rknn") if os.path.exists(model_path): size = os.path.getsize(model_path) / (1024 * 1024) total_size += size logger.info(f" - {model_name}.rknn: {size:.1f} MB") logger.info(f"💾 总大小: {total_size:.1f} MB") else: logger.error("💥 转换过程出错,请检查日志文件") logger.info("=" * 60) logger.info("下一步: 将RKNN模型复制到Orange Pi进行推理") logger.info("=" * 60) if __name__ == "__main__": start_time = time.time() main() logger.info(f"总耗时: {(time.time() - start_time)/60:.1f} 分钟")
|